Showing posts with label Power amps. Show all posts
Showing posts with label Power amps. Show all posts

Tuesday, February 16, 2021

Burning Amp BA-3b (Balanced) Updated Power Supply

In my previous post of the Burning Ampifier 3 Balanced, I mentioned that I replaced the CRC filters in the power supply with 100mF + 10mH + 100mF CLC filters per rail per channel. Here are some pictures of the new power supply:

From left to right, you can see two toroidal power transformers with a soft start mounted on top; four bridge rectifiers; first four capacitors, one per channel per rail, with their discharge resisotrs; four chokes; the other four capacitors; and the PCBs with the from ends, mounted on the rear wall of the chassis. On the far side, there are six pairs of power MOSFETs mounted on a heatsink. Here is a close-up shot showing how the capacitors and chokes are mounted:


The capacitors are Vishay/BCcomponents MAL2 101 16104, chokes are Hammond 159ZJ. The power transformers are from Antek.


Thursday, January 28, 2021

Sunday, December 13, 2020

Velleman K4040, take three

This is the last of three posts on Velleman K4040. Here are the links to the first and second posts.

Over 10 years ago, I built a Velleman K4040 power amplifier from an (expensive) kit. The amplifier still looks quite impressive:

Not satisfied with the out-of-the-box performance, I modified the amplifier (see my previous post for details). The result was a dramatic improvement in sound. However, without its global feedback, the amplifier had higher measured distortion, higher input sensitivity and more hum.

Ten years later, I (slightly) revised the amplifier. I replaced the resistors in the signal path with mil-spec metal film from Vishay, tidied up the wiring of the phase splitter and added a global feedback loop that encloses the input stage. With it, the amplifier has 0.015% distortion at 1W (that is, one-sixth of its original specification), the hum is much reduced, and the input sensitivity is in line with the output voltage of today's signal sources.

The final schematic:

Measurement results compare well to those of tube power amplifiers made by major brands and priced at up to $10,000, as measured by Stereophile. The modified Vellemn K4040 offers respectable measured performance typical of a classic tube design.


More photos (click for higher resolution):

















Monday, April 15, 2019

Burning Amp BA-3b (Balanced)

Big, hot, heavy, and definitely a keeper. The discussion of the amplifier is on diyAudio.com.

The build is in a 4U/400 case from modushop; each side has two 200mm heatsinks, each holding six MOSFETs (three complementary pairs) and a biasing circuit.

The construction is dual mono, with separate transformers for each channel. Power supplies occupy most of the chassis, while the actual electronics is mounted on the sides.

The power supply was initially CRC filtered, with four 22,000uF Mundorf MLytic® HC High Current Power Caps per channel (pictured).

After successfully fitting my ZenV4-J with CLC filters, I learned how much can be gained by improving power supplies in no- and low-feedback amplifiers, which  have little or no control over output errors and thus poor PSRR. On this premise, I replaced the CRC filters in the power supply of my BA3B with CLCs, so instead of 22mF + (2 x 0.22ohm) + 22mF I now have 100mF + 10mH + 100mF per rail per channel.

The power supply provides +/- 18V rails, with quiescent current set at 3 amps per channel.











Yet another Super Gain Clone

Unsatisfied with the sound of my gainclone amplifier (see an earlier post), I re-used the enclosure and the power supply for a gainclone along the lines suggested by Bob Cordell, whose implementation of an LM3886 based amp was praised by at least one member on the NJ audio society. Quote:"Bob showcased the Super GC at the NJ Audio Society and it sounded fantastic."

I skipped both the Klever Klipper and the toroidal air core output inductor, and kept only 10,000 uF per rail in the PSU. The schematic can be found in Chapter 27 of Cordell's Designing Audio Power Amplifiers. The PCB was designed to re-use the existing mounting holes of the ChipAmp's PCB.

The result? Better than with a plain vanilla chip amp, but IMHO still not good enough for music. Perhaps I should not have limited myself to re-use of the PSU et al. but should have taken all the details of my implementation seriously.

That was 2011. Looking back from 2019, I know I can do better! For more details, check out this discussion at diyAudio.com and my boards on sale.
 




Monday, April 1, 2019

DCPP aka Engineer's Amplifier

In early 2011, I built a Distortion Cancelling Push Pull (DCPP) amplifier designed by Peter Millett. It sounds very nice, was fairly easy to build, and is rather inexpensive. Thank you Peter for the great design!